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Abstract

Compressed Sensing (CS), also known as Compressed Sensing, or Compressive Sam-
pling, is a technique of reconstructing signals from reduced number of measurements,
under the assumption of sparsity, or compressibility, of the signals. It is known that
under certain conditions, CS can reconstruct sparse signals at a rate significantly lower
than the Shannon-Nyquist-Rate. This thesis aims to study CS under the constraint
of discreteness of signals. Our contribution in this thesis is two-fold: first, we devel-
oped the Discrete Null Space property, which guarantees the unique reconstruction
of discrete signals; second we propose the optimization methods of BFW-SAV(Binary
Fixed-Weights Sum of Norms) and BRSN(Binary Reweighed Sum of Norms), which
are two novel convex optimization methods that provide accurate binary signal recon-
struction.
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1 Introduction 1

Chapter 1

Introduction

The topic of Compressive Sensing (CS) was firstly introduced by David Donoho, Em-
manuel Candes, Justin Romberg and Terence Tao in 2006. They showed that under
certain conditions, sparse signals, i.e., signals with a limited amount of non-zero entries,
can be recovered accurately and uniquely from a small set of data in the measurement
system [1, 2, 3, 4, 5]. The technique of CS is significant and far-reaching as it is a
scheme of reconstructing sparse signals with only a few measurements. What is more,
the CS techniques allow precise reconstruction of sparse signals with a sub Shannon-
Nyquist Sampling rate.

Much research in recent years has focused on using CS techniques to reconstruct
discrete signals. This paradigm of purposefully uniting CS and discrete signal recon-
struction is called Discrete Compressive Sensing. The development of Discrete CS is
motivated by grayscale image processing [6], symbol detection [7], control engineering
[8], multi-user detection and communications [9, 10], to name a few.

This thesis aims to investigate discrete CS in two perspectives: (1) the unique guar-
antee of discrete signal reconstruction, and (2) convex optimization methods for dis-
crete signals. The rest of the chapters are organized as follows: in the second chapter,
a short survey on General CS is given; in the third chapter, the condition of unique
reconstruction guarantee is developed under the Discrete CS scheme, and the opti-
mization methods for discrete signals are presented; in the fourth chapter, numerical
experiments are provided; and in the last chapter, the thesis is summarized and some
open questions are raised.
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1 Introduction 2

Notation
Throughout out this thesis, Blackboard bold F is used to represent the underlying field
R or C.

Vectors and matrices are in bold. Vectors v ∈ Fn are column vectors, denoted by

v =


v1

v2
...
vn

 .

The 1-vector of dimension N is defined by

1N = (1, 1, . . . , 1︸ ︷︷ ︸
N

)T .

The sign function of a real number x is defined as follows:

sgn(x) =


1 x > 0

0 x = 0

−1 x < 0

.

The sign function of a vector v = (v1, . . . , vn)T ∈ Rn is defined as follows:

sgn(v) = (sgn(v1), . . . , sgn(vn)).

When 1 ≤ p <∞, the p-norm of vector v ∈ Fn is defined by:

||v ||p =
[

n∑
i=1
|vi|p

] 1
p

.

When 0 < p < 1, the p-quasi-norm is defined in the same fashion.

When p = 0, the l0 “norm” of v ∈ Rn is defined by

||v ||0 = ||(v1, v2, . . . , vn)T ||0 = { the number of vi |1 ≤ i ≤ n, vi 6= 0}.

Please note that in spite of the name, the l0 norm is not really a norm. The name
follows from the convention.
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1 Introduction 3

The support of a vector v, denoted by supp(v), is defined by

supp(v) = {i|v(i) 6= 0}.

Matrices A ∈ Fm×n are denoted by

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

... ... . . . ...
am,1 am,2 · · · am,n

 .

The Kronecker product of two matrices A ∈ RM×N and B ∈ RK×L is denoted by
A⊗B, which is defined as

A⊗ B =


a1,1B a12B · · · a1,NB

... ... . . . ...
aM,1B aM,2B · · · aM,NB

 ∈ RMK×NL.
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2 Compressive Sensing: an Overview 4

Chapter 2

Compressive Sensing: an Overview

2.1 Underdetermined linear system and K-sparse model
The mean goal of Compressive Sensing is to find sparse solutions to the underdeter-
mined linear system, which is written as y = Φx:

Figure 2.1: Underdetermined linear system

where y ∈ Rm, x ∈ RN , Φ ∈ Rm×N , m � N . Note that, in the CS Scheme, we
assume that Φ the sensing matrix “reduces the dimension” in the sense that it maps
the high dimensional vector to the low dimensional one. From basic linear algebra, we
know that the underdetermined linear system has infinitely many solutions.

We now consider the K-sparse Model, by imposing the sparsity condition on the
vector x. By saying “x is K-sparse,” we mean that x has at most K non-zero entries.
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2 Compressive Sensing: an Overview 5

Figure 2.2: K-Sparse Model

The K-sparse model is meaningful for two reasons: first, it preserves structure and
information in the linear system; second, under certain conditions that we will specify
later, the model is invertible with high probability, and in this case we are able to
tackle the previously ill-posed inverse problem.

We call a triple (y,A) a problem instance [11]. Given a problem instance, Compres-
sive Sensing is a technique to reconstruct the underlying x in the K-sparse model.

2.2 Reconstruction of Sparse Signal
There are several classical techniques to reconstruct the underlying solution vector
x. In this section, we introduce two well-known optimization methods, l0 and l1

minimization. We conclude that although l0 embodies our commitment to the K-
sparse model, it is more practical to work with l1 minimization.

2.2.1 l0 minimization

Given the problem instance (y,A), we wish to penalize the number of non-zero entries
of the to-be-recovered vector x. This leads to the l0 minimization:

minimize || z ||0 subject to Φ z = y (P0)

However, directly solving the l0 minimization is NP-hard. The proof is provided by
[12]. To see the validity of the claim intuitively, suppose N = 1000, K = 50. As a
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2 Compressive Sensing: an Overview 6

result, there will be (
1000
50

)
≈ 1095

possible supporting sets. Even if we check 1012 subsets per second, the computing time
will last for 1065 years.

2.2.2 l1 minimization

To get rid of NP-hardness, we replace l0 norm by l1 norm. The method is called the
l1 minimization, or the Basis Pursuit, which was firstly introduced in [13].

minimize || z ||1 subject to Φ z = y (P1)

The Basis Pursuit has two advantages: it is not NP-hard, and therefore it is practi-
cal to solve; what is more, it is a convex optimization problem and therefore we have
handy tools to study it.

Naturally, one wants to ask the question that, under which conditions the solutions
provided by (P1), the practical case, coincide with those of (P0), the ideal case. Work
reported in [2, 3, 4] showed that the (P0) and (P1) lead to the same result, given that
the vector is sparse enough. The work also provides easily-satisfied bounds on the
required sparsity that guarantee such equivalence.

2.2.3 Greedy Methods

Based on Basis Pursuit, numerous efficient algorithms are developed, for example,
MP(Matching Pursuit) [14], OMP(Orthogonal Matching Pursuit) [15, 16], IH(Iterative
Threshold) [17], etc. These greedy algorithms are known for their low computational
complexity, though they have the drawbacks of low reconstruction accuracy.

Among all greedy algorithms, one of the most heavily studied and widely used al-
gorithms is the OMP. As shown in the box below, OMP contains two steps in each
iteration: the index-selecting step (OMP1) and the projection step (OMP2). The two-
step iteration indicates its greedy nature: the index is chosen to minimize the residual
in || · ||2 locally at each iteration.
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2 Compressive Sensing: an Overview 7

Orthogonal Matching Pursuit(OMP)

Input: measurement matrix A, measurement vector y
Initialization: S0 = ∅, x0 = 0
Iteration: repeat until a stopping criterion is met at n = n

Sn+1 = Sn ∪ {jn+1}, jn+1 := argmax
j∈[N ]

{|(A∗(y−Axn))j|} (OMP1)

xn+1 = argmin
z∈CN

{||y−Az ||2, supp(z) ⊂ Sn+1} (OMP2)

Output: the n sparse vector x] = xn

2.3 Null Space Property
We know that Basis Pursuit can accurately recover signals given that the signals are
sparse enough, but there is no reason to believe the reconstructed vector is unique.
In this section, we introduce the Null Space Property, which guarantees the unique
reconstruction of the k−sparse vector x via Basis Pursuit.

Definition 2.3.1 (Definition 4.1 in [18]). Let Φ ∈ Fm×N(F = C or R) and 1 ≤ k ≤ N .
Then Φ is said to satisfy the Null Space Property (NSP) relative to a set K ⊂ [N ] if

‖vK‖1 < ‖vKc‖1 for any v ∈ ker Φ\{0}.

where

vK(i) :=

 v(i) if i ∈ K,
0, otherwise.

It is said to satisfy the NSP of order k if it satisfies the NSP relative to any set K ⊂ [N ]
with Card(K) ≤ k,

We now indicate the link between the Null Space Property and exact recovery of
sparse vector via Basis Pursuit.

Theorem 2.3.2 (Theorem 4.4 in [18]). Let Φ ∈ Fm×N(F = C or R), K ⊂ [N ], every
vector x ∈ F supported on a set K is the unique solution of (P1) with y = Ax if and
only if Φ satisfies the null space property relative to K.
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Theorem 2.3.3 (Theorem 4.5 in [18]). Let Φ ∈ Fm×N(F = C or R), K ⊂ [N ], every
k-sparse vector x ∈ F is the unique solution of (P1) with y = Ax if and only if Φ
satisfies the null space property of order k.

The above two theorems specify the conditions that we required for unique and exact
recovery under the Basis Pursuit approach.

2.4 Summary
Compressive Sensing aims to reconstruct sparse vectors from the underdetermined
linear system. There are several reconstruction approaches, such as l0 minimization,
l1 minimization, and the greedy algorithms. l0 minimization is proved to be NP-
hard and therefore not practical to conduct, though it is of theoretical importance;
l1 minimization, or Basis Pursuit, viewed as a practical substitute of l1, is heavily
studied by researchers; based on the analysis of l1, efficient greedy algorithms such as
MP, OMP, and IHT, are developed. The Null Space Property specifies a condition
that guarantees the unique and exact recovery of sparse vectors in the Basis Pursuit
approach.
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Chapter 3

Discrete Compressive Sensing

In the previous chapter, we introduced the techniques of CS, which enable sparse
signals reconstruction at a rate significantly lower than the Shannon-Nyquist-Rate.
The price we pay for applying the technique is the “sparseness” of signals. In this
chapter, we introduce paradigm of Discrete Compressive Sensing, which exploits not
only the sparseness of the signals but also the “discreteness” of the signals.

3.1 Problem Setup
To formulate the discrete Compressive Sensing paradigm, we introduce the Discrete
K-Sparse Model by modifying the K-sparse model under the discrete constraint. The
modification is shown intuitively in Figure 3.1.

Figure 3.1: Discrete K-sparse Model

As before, A is a m × N matrix, y ∈ Rm, and x is K-sparse. Further, we assume
that x takes values from a finite set or alphabet. That is to say, we assume that we
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3 Discrete Compressive Sensing 10

have the prior knowledge that entries of x are selected from some known finite set, or
alphabet, α.

3.2 Discrete Null Space Property
Our aim is to find the conditions of unique reconstruction guarantee of Discrete K-
sparse model. Our previous experience in the general K-sparse model suggests that we
shall polish the Null Space Property in the discrete setting. Indeed, since the Discrete
K-sparse model is a sub-case of General K-sparse model, we expect a sharper condition
for the unique and exact reconstruction. To this end, we relax the condition of Null
Space Property and define the Discrete Null Space Property as the following:

Definition 3.2.1. A matrix A ∈ Rm×N is said to satisfy the discrete null space
property relative to the alphabet α ⊂ {0,±1,±2, · · · ± L} and the set K ⊂ [N ] if

| 〈vK , sgn(x)K〉 | < ||vK ||1. (3.2.1)

v ∈ kerA \{0} and for x ∈ αN ∩ ΣK .

It is said to satisfy the discrete null space property of order k if it satisfies the
discrete null space property relative to any set K ⊂ [N ].

Remark 3.2.2. To check the discrete null space property of order k, it suffices to check
the largest k entries in absolute value. Notice that for α = {0,±1, · · · ,±L}N ∩ ΣK

where L is a positive integer and K ⊂ [N ],

max
x0∈C
|〈vK , sgn(x0)K〉| =

∑
i∈K

|v(i)| = ‖vK‖1.

Remark 3.2.3. Suppose the alphabet α = {0, 1, · · · , L}, x ∈ {0, 1, · · · , L}N ∩ΣK where
K ⊂ [N ], then the condition 3.2.1 is written as

∣∣∣∣∣∑
i∈K

v(i)
∣∣∣∣∣ < ‖vK ‖1 for any v ∈ kerA\{0}. (3.2.2)

Now we indicate the link between Discrete Null Space property and the unique and
exact recovery for the linear system in the Discrete K-sparse model.
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3 Discrete Compressive Sensing 11

Theorem 3.2.4. Given a matrix A ∈ Rm×N , every vector x ∈ αN ∩ΣK is the unique
solution of P1 with y = Ax if and only if A satisfies the discrete null space property
with respect to α.

Proof.

Essentially we mimic the proof of Null Space Property of individual vectors (Theo-
rem 4.26 & Theorem 4.30 in [18]).

Suppose A satisfies the the discrete null space property relative to the alphabet
α ⊂ {0,±1,±2, · · ·±L} and the set K ⊂ [N ], i.e., ∀v ∈ kerA \{0} and z ∈ αN ∩ΣK ,
we have

| 〈vK , sgn(z)K〉 | < ||vK ||1.

We want to show z ∈ αN ∩ ΣK is the unique solution of P1.

For x 6= z such that Ax = Az, write v = z−x ∈ kerA \{0}

||x ||1 = || z−v ||1
= ||(z−v)K ||1 + ||(z−v)K ||1
= 〈(z−v)K , sgn(z−v)K〉+ ||vK ||1
≥ |〈(z−v)K , sgn(z)K〉|+ ||vK ||1
> |〈(z−v)K , sgn(z)K〉|+ | 〈vK , sgn(z)K)〉 |

≥ | 〈(z)K , sgn(z)K〉 |

= || z ||1.

Hence z is the unique minimizer.

Conversely, suppose z is the unique solution of P1 and let v ∈ kerA \{0}. For any
t > 0, xt := z−tv satisfies Ax = Az. Then

|| z ||1 < ||xt ||1
= ||(xt)K ||1 + ||(xt)K ||1
= ||(xt)K ||1 + ||(z−tv)K ||1
= ||(xt)K ||1 + t||vK ||1.
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3 Discrete Compressive Sensing 12

Minus ||(xt)K ||1 on each side, we get:

t||vK ||1 > || z ||1 − ||(xt)K ||1
= 〈(z)K , sgn(z)K〉 − 〈(z−tv)K , sgn(z−tv)K〉

= 〈(z)K , sgn(z)K − sgn(z−tv)K〉+ t〈vK , sgn(z−tv)K〉.

Divide t on each side,

||vK ||1 > 〈(z)K ,
1
t
(sgn(z)K − sgn(z−tv)K)〉+ 〈vK , sgn(z−tv)K〉. (3.2.3)

Note that, ∀k ∈ K, sgn(vk) = 1 or -1, and

lim
t→0+

sgn(z−tv)K = sgn(z)K .

Let t→ 0+ in (2.2),

||vK ||1 = lim
t→0+
||vK ||1

> lim
t→0+
〈(z)K ,

1
t
(sgn(z)K − sgn(z−tv)K)〉+ lim

t→0+
〈vK , sgn(z−tv)K〉

= 〈vK , sgn(z)K〉.

Replace v to −v if necessary, we have

||vK ||1 > −〈vK , sgn(z)K〉,

and we are done.

3.3 Optimization methods in Discrete CS
Recall that in the Discrete CS paradigm, we aim to reconstruct the discrete sparse
signal x from the underdetermined linear system

y = Ax, (3.3.1)

where x ∈ {α1, . . . , αq}N , supp(x) = K, Φ ∈ Rm×N ,y ∈ Rm,m� N .

Recent research in Discrete CS has suggested that some novel optimization methods
have better reconstruction performances compared with the renowned l1 minimization,
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which is widely used in the General CS paradigm. In this section, we give a short survey
on those optimization methods tailored for Discrete CS, and then we propose two new
optimization methods.

3.3.1 Boxed Basis Pursuit

In [11] the authors proposed the Feas, or Boxed BP optimization to reconstruct k-
simple vectors, where k-simple means that the vector contains only k entries that are
not 0 or 1. If we fix the binary alphabet elements as α = {0, 1}, the binary signal
under the Discrete CS scheme coincides with the 0-simple vector.

Boxed-BP

minimize || z ||1

subject to Φ z = y, where Az = y, 0 ≤ zi ≤ 1

3.3.2 l∞ minimization

The l∞ minimization, also known as max-norm minimization or Democratic Represen-
tation, is introduced to reconstruct the discrete signal with entries +1 and −1 in [19].

l∞ minimization

minimize || z ||∞ subject to Φ z = y (l0)

Note that

• It is possible to apply the same optimization method to the other alphabet sets
with cardinality of two, i.e., α = {α1, α2}, by simple a translation.

• The solutions of l∞ minimization are in fact of the boundary points of hypercube
[−1, 1]N . This implies that it is not possible to extend the optimization method
to the case α := {α1, . . . , αq} with q > 2.
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3.3.3 Regularized l1 minimization (Rl1)

The Regularized l1 minimization is proposed in [20]. It is a sparse-seeking optimization
method, aiming to force the signal entries that are not in the alphabet set to be 0.

Regularized l1 minimization(Rl1)

minimize
q∑

i=1
|| z−αi1T

N ||1 subject to Φ z = y

α = {α1, . . . , αq} is the alphabet set

The Regularized l1 minimization has the following advantages:

• Theorem 1 in [20] provides the theoretical guarantee that if we fix p = 2, Rl1
minimization yields the unique solution to 3.3.1 with high probability. What is
more, if q = 2, Rl1 and l∞ yield the same result.

• According to in the analysis provided by section IV in [20], Rl1 is slightly less
computationally expensive than l∞.

• Unlike l∞ optimization method, which provides satisfactory reconstruction result
only if q = 2, we can apply Rl1 to reconstruct signals with the alphabet α =
{α1, . . . , αq}, q > 2.

3.3.4 Sum of Absolute Values minimization (SAV)

The following optimization method is introduced in [21]. The method is proposed to
reconstruct the discrete signals under finite alphabet α = {α1, . . . , αq} that does not
necessarily contain 0. Moreover, the author assumes that the elements of a signal are
chosen from a finite alphabet with a known probability distribution, which is given by

pi = P(xj = αi), ∀j = 1, . . . , N, i = 1, . . . , q,

where

pi > 0, p1 + · · ·+ pq = 1
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Sum of Absolute Values minimization(SAV)

minimize
q∑

i=1
pi|| z−αi1N ||1 subject to Φ z = y

where pi = P(zj = αi),∀j ∈ [N ]

Example 3.3.1. Suppose α = {0, 1}, we can re-write our SAV penalty function as:

minimize p|| z ||1 + (1− p)|| z−1N ||1 subject to Φ z = y,

where p = P(zj = 0),∀j ∈ N.

Note that

• SAV is a refined version of Rl1. They are different only on the weights of sum-
mons of l1 norms. The former chooses the weights according to the probability
distribution of the alphabet set, while the later fixes the the uniform 1 as weights.

• We expect the reconstruction performance of SAV as symmetric about p = 0.5.
That is to say, for a fixed p0, SAV’s reconstruction performance of the signals of
sparsity p0 is supposed to be the same as that of (1− p0).

3.3.5 Sum of Norms minimization (SN)

The SN optimization is proposed in [22] to reconstruct the binary sparse signal with
only 0 and 1 as entries. That is to say, in the Discrete CS scheme, we fix α = {α1, α2} =
{0, 1}.

The authors in [22] state that SN is the first optimization method that brings sparse
representation [1, 5, 25] and democratic representation [19, 26, 27] together to solve
Binary compressive Sensing problem. They show that l∞ and l1 can be combined to
utilize the underlying binary sparsity. This is achieved by adding l1 norm and l∞ norm
together, up to a scaling factor λ and a shifting factor vector c.
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Sum of Norms minimization(SN)

minimize || z ||1 + λ|| z−c 1N ||∞ subject to Φ z = y (l1,∞)

Numerical experiments in [22] are performed to choose the well-performed parame-
ter, c = 1

2 and λ = 100.

3.3.6 Binary Fixed-Weights Sum of Absolute Values minimization
(BFW-SAV)

The first optimization we propose, the BFW-SAV, is a refined version of SAV in re-
constructing binary signal. The motivation of defining this optimization method will
be given in 4.2.1.

Binary Fixed Weights Sum of Absolute Value minimization(BFW-SAV)

minimize ρ|| z ||1 + (1− ρ)|| z−1N ||1 subject to Φ z = y

where ρ = sgn(p− 1
2) · ε+ 1

2 , ε > 0, p = P(zj = 0),∀j ∈ [N ]

3.3.7 Binary Reweighted Sum of Norms (BRSN)

The second optimization method we propose, BRSN, combines SAV and SN to solve
Binary Compressive Sensing problems:

Binary Reweighted Sum of Norms (BRSN)

minimize (1− p)|| z ||1 + p|| z−1T
N ||1 + λ || z−1

2 1N ||∞

subject to Φ z = y, where p = P(zj = 0), j ∈ [N ].
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BRSN is proposed due to the following considerations:

• Motivated by SN, we combine l1 norm and l∞ norm to exploit the underlying
binary sparsity.

• Motivated to SAV, we use the known probability distribution over alphabet to
determine the weights of summons of l1 minimization. Notice that in the binary
CS problem, p = P(zj = 0) corresponds to the sparsity level of the vector. In
the case of p is close to 1, the to-be-recovered vector is assumed to be sparse;
in the case of p close to 0, the to-be-recovered vector is sparse is assumed to be
dense. In our K-sparse model, if we assume that the to-be-recovered vector is
identically distributed, then p = 1− K

N
.

3.4 Summary
The paradigm of Discrete CS aims to reconstruct discrete signals from incomplete linear
measurements. Based on the priors of sparsity as well as discreteness of signals, we de-
veloped the Discrete Null Space Property, which is a unique-reconstruction-guarantee
condition that is sharper compared with the usual Null Space Property introduced in
Chapter 2.

Recently, several optimization methods are proposed to solve Discrete CS problems.
We expect these optimization methods, tailored for different alphabet sets, to perform
better than the classical l1 minimization. The methods are summarized as below:

Optimization Method Abbreviation Alphabet set that applies
Boxed Basis Pursuit Boxed-BP α = {0, 1}

Infinity Norm l∞
α = {α1, α2}

∀αi ∈ R, i ∈ 1, 2

Reweighted l1 Rl1
α = {α1, . . . , αq}

∀αi ∈ R, i = 1, . . . , q, q ∈ N

Sum of Absolute Values SAV
α = {α1, . . . , αq}

∀αi ∈ R, i = 1, . . . , q, q ∈ N
Sum of Norms SN α = {0, 1}
Binary Fixed Weights
Sum of Absolute Values

BFW-SAV α = {0, 1}

Binary Reweighed Sum of Norms BRSN α = {0, 1}
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Chapter 4

Numerical Experiments on Binary CS

In this section, we present the numerical experiments that evaluate the different op-
timization methods we introduced in the last chapter under the Binary Compressive
Sensing Scheme. First, we conduct experiments on SAV optimization and polish the
results published in [21], and consequently we will see BFW-SAV is a product of such
a polishment; second, we compare our proposed BFW-SAV and BRSN with other
methods.

4.1 Experiment Environment
Recall that in Binary CS scheme, our goal is to find binary sparse solutions to the
underdetermined systems y = Ax. Throughout this chapter, we fix A as 100 × 200
Gaussian matrices. We use Gaussian matrices because they satisfy Null Space Prop-
erty with high probability(section 9.4 of [18]), and therefore the underdetermined linear
system omits unique solution with high probability; we use the 100 × 200 dimension
because [21] used the same dimensions, and we use them for the convenience in com-
parison.

In each iteration, we generate the k-sparse binary x. Then we produce y by com-
puting Ax. Next, we perform optimizations to reconstruct x on the problem instance
(y,A). As a result, we get a (not necessarily correct) solution vector z. Comparing
with the genuine solution x, we shall find how satisfactory our reconstruction method
is.

There are several ways to define reconstruction accuracy. The most common way
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in the literature of general CS is the averaged SNR(Signal-to-noise ratio), where the
SNR for each iteration i is defined as

SNR(i) = ||x− z
i ||2

||x ||2
(4.1.1)

where zi is the reconstructed signal in the i-th experiment unit.

Given M iterations, the (averaged) SNR over M units is defined as

(averaged) SNR = 1
M

M∑
i=1

SNR(i) (4.1.2)

However, the averaged SNR is not really the appropriate reconstruction-accuracy
measurement if we have the prior knowledge that the signal is discrete. This is because:

• In most cases, the elements of the alphabet set are chosen to be integers, for
instance, α = {0, 1}. Hence, the round-to-integer operations are usually applied
to the output in the reconstruction scheme. After the rounding, SNR loses its
potential to measure the closeness between reconstructed vector and genunine
solution.

• In the discrete CS scheme, we are interested in the cases that optimization meth-
ods perfectly reconstruct the signals in each and every entry. SNR fails to provide
this “exact-reconstruction” information.

With the above considerations, instead of using averaged SNR, we use the averaged
RFP(Reconstruction Failure Probability), which is defined as the following

RFP(i) =

1 ∃j, 1 ≤ j ≤ N, such that zi
j 6= xi

j

0 else

where N is the dimension of the signal x and z.

Given M experiments, the (averaged) RFP over M is defined as

(averaged) RFP = 1
M

M∑
i=1

RFP(i) (4.1.3)

The experiments throughout this chapter are aided by CVX toolbox [23, 24].
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4.2 Numerical Experiments on SAV
Recall the SAV minimization from section 3.3.4:

Sum of Absolute Value minimization(SAV)

minimize
∑

pi|| z−αi1N ||1 subject to Φ z = y, where pi = P(zj = αi),∀j ∈ [N ]

Restricting ourself in the Binary CS scheme, we fix the alphabet set as α = {α1, α2} :=
{0, 1}. Then the penalty function can be re-written as:

minimize p|| z ||1 + (1− p)|| z−1N ||1 subject to Φ z = y where p = P(zi = 0) (4.2.1)

4.2.1 How to Choose Weights for SAV

We ask the following question: to reconstruct binary signals accurately based on SAV,
do we really have to know the probability distribution over the alphabet set α = {0, 1}?

As a comparison to the weights p and (1− p) in the optimization in 4.2.1, we do the
following optimization,

minimize w|| z ||1 + (1− w)|| z−1N ||1 subject to Φ z = y (4.2.2)

where w is a fixed parameter which is no longer related to the probability distribution
over the alphabet.

We want to check that if it is indeed the case that the RFP has the lowest curve
when p and w coincides. To realize this, we perform a two loop programming: in the
outer loop, we increase p = P(zi = 0) from 0 to 1 and generate the genuine signal x
according to p; in the inner loop, for each of p, we increase w from 0 to 1 and perform
the optimization 4.2.2. The experiment result is shown in Figure 4.1 below.
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Figure 4.1: RFP with respect to p = P(xi = 0) and w

There is one surface and three curves in Figure 4.1:

• The surface: the RFP surface of w associated with p, where w is the weight in
4.2.2 and p = P(zi = 0).

• Green curve: the RFP in the case of w = p = P(zj = 0) in 4.2.2, i.e., the SAV.

• Red curve: the RFP in the case of w = 1
2 − ε in 4.2.2.

• Black curve: the RFP in the case of w = 1
2 + ε in 4.2.2.

In the following figure, we compare the three curves in two dimensional space.
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Figure 4.2: Comparing the choice of w

In Figure 4.2, we observe that the red and black curves have the lower RFP on the
left and right side of p = 0.5 when compared with the green curve. The figure shows
that, we can achieve better reconstruction performance, if we fix w = (1

2 − ε), ε > 0 in
the case of dense signal, and w = (1

2 + ε), ε > 0, in the case of sparse signal. Dr. Dae
Gwan Lee formally proved the above result by analyzing the tangent cone associated
with the SAV problem. The work is not yet released and we will not include the proof
in this thesis.

The observations above motivate us to propose the Binary Fixed-Weight SAV opti-
mization:
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Binary Fixed Weights Sum of Absolute Value minimization(BFW-SAV)

minimize ρ|| z ||1 + (1− ρ)|| z−1N ||1 subject to Φ z = y

where ρ = sgn(p− 1
2) · ε+ 1

2 , ε > 0, p = P(zj = 0),∀j ∈ [N ]

The ideas is that, when p < 0.5, we let our RFP curve be the red curve in Figure
4.2; when p > 0.5, we let the RFP curve be the blue one. If p = 0.5, we let the RFP
curve be the green one. To realize this, we choose the weight ρ as

ρ = sgn(p− 1
2) · ε+ 1

2 .

Or equivalently,

ρ =


1
2 − ε p < 1

2
1
2 + ε p > 1

2
1
2 p = 1

2

.

4.2.2 On the Reconstruction Performance of SAV

In [21], the author compares the performance of binary signal reconstruction by SAV
and BP and shows that SAV outperforms BP. Please refer to the result in Figure 4.3
below, which is copied directly from Fig. 2 subplot 1 of [21].

Figure 4.3: (cf. Fig.2 subplot 1 in [21]) Averaged SNR ||x− z ||2
||x ||2 vs p by SAV (solid) and

the basis pursuit (dash)

However, note that the averaged SNR is not really the appropriate reconstruction
measurement if we are interested in the exact reconstruction rate. Hence, instead of
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using averaged SNR, we repeat the experiment using RFP as reconstruction accuracy
measurement. We get the following result:

Figure 4.4: Step size of p = 0.01, Number of experiments for each p is 200

We shall zoom in and have a closer look at the range of 0.3 ≤ p ≤ 0.7. In the
meanwhile, we increase the number of trials per each p and make the step-size finer.
The result is shown in Figure 4.5.
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Figure 4.5: Step size of p = 0.005, Number of experiments for each p is 300

The experiment results in Figure 4.4 and 4.5 are somewhat surprising. We may ask
the following questions:

• Given the step-size fine enough and the number of experiments large enough,
why is the SAV curve zigzagging in a large variation?

• Why does the SAV curve has peak near p = P(xi = 1) = 0.35 and 0.65, and
what happens in the “V-shaped” range between 0.35 and 0.65?

So far we do not have solid arguments for the above questions.

4.3 Numerical Experiments on BRSN
Recall the proposed BRSN minimization from the section 3.3.7:

Binary Reweighted Sum of Norm(BRSN)

minimize (1− p)|| z ||1 + p|| z−1N ||1 + λ || z−1
2 1N ||∞

subject to Φ z = y, where p = P(zj = 0), j ∈ [N ]
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4.3.1 On the Parameter Tuning for BRSN

Our first experiment is designed to tune the parameter λ for BRSN. The result is
shown in Figure 4.6.

Figure 4.6: Tuning λ for BRSN

Increasing λ from 5 to 275 in the step size of 10, we see that λ = 35 is a fair choice for
BRSN, as it gives one of the lowest RFP curves. In the experiments in the subsequent
sections, we fix λ = 35.

4.3.2 On the Reconstruction Performance of 1-dim Binary Vectors

In the following experiment, increasing p by the step size of 0.01, we compare recon-
struction performance of sparse binary vector between BP(Basis Pursuit), Boxed-BP,
SAV(Sum of Absolute Values), SN(Sum of Norms), the proposed BFW-SAV(Binary
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Fixed Weights Sum of Absolute Values), and the proposed BRSN(Support-based Sum
of Norms). The result is shown in Figure 4.7.

Figure 4.7: RFP of SAV, BP, Boxed-BP, SN and BRSN

We have the following observations:

• Overally, our proposed BFW-SAV(blue) and BRSN(red) are the optimization
methods with the two lowest RFP curves.

• Similar as SAV, the BFW-SAV and BRSN have symmetric RFP curves.

• Given the binary signal is dense (p < 0.5), BRSN has the better reconstruction
accuracy when compared to boxed-BP; on the other hand, if the binary signal is
sparse, the former has no advantage compared with the latter.

• The boxed BP has a very unstable reconstruction accuracy, given the signal is
dense.

• In the range of p ∈ [0.4, 0.6], BRSN out-performs BFW-SAV. In other ranges,
the comparison is not clear.
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4.3.3 On the Reconstruction Performance of 2-dim Bitonal Images

In the following experiment, we compare the reconstruction performance of bitonal
(or Black-and-white) image, when using Basis Pursuit, SAV, and proposed BRSN. We
essentially mimic the second experiment in [21] and proceed the experiment in the
following steps.

1. Consider the 37 × 37-pixel bitonal image shown on the left of Figure 4.8. We
add Gaussian white noise with a mean of 0 and standard deviation of 0.1 to
each pixel. The noised image is shown on the right of 4.8. The noised image is
another 37× 37 real-valued matrix, and we call this matrix X, X ∈ R37×37. We
concatenate the matrix column-wisely and get the column vector vec(X).

Figure 4.8: The original bitonal image (left) and the noised image (right)

2. Apply the DFT (Discrete Fourier Transformation) to the matrix X and get the
transformed matrix X̂ = WXW , where

W :=


1 1 1 · · · 1
1 ω ω2 · · · ωK−1

... ... ... . . . ...
1 ωK−1 ω2(K−1) · · · ω(K−1)(K−1)

 (4.3.1)

where k = 37, ω := exp(−2πj/K). Again,we concatenate X̂ column-wisely and
get a column vector vec(X̂), which can be written in the following way because
of the above relation:

vec(X̂) = (W ⊗W )vec(X) ∈ C1369

where ⊗ is the Kronecker tensor product.
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3. Randomly half-size downsample vec(X̂) to get y ∈ C685. Now, the sensing matrix
Φ ∈ C685×1369 is composed of the down-sampling row vectors of W ⊗W .

4. Assume P(vec(X̂)i = 1) = P(vec(X̂)i = 0) = 1
2 . Apply BP, SAV, and BRSN on

Φ vec(X) = y

to reconstruct the vec(X).

The experiment results are shown in Figure 4.9.

Figure 4.9: Bitonal image reconstruction results using BP(left), SAV(middle), and pro-
posed BRSN(right)

The results show that the performance of the proposed BRSN is somewhat better
than that of BP and SAV.

Notice that the BFW-SAV is equivalent to SAV under our assumption of

P(vec(X̂)i = 1) = P(vec(X̂)i = 0) = 1
2 ,

and therefore we do not have to consider BFW-SAV in this experiment. The recon-
struction results from SN and boxed BP are extremely poor and we omit them here.

4.4 Summary
We summarize our conclusion from the previous experiments:

• We can choose the weights as fixed numbers in SAV and get a better reconstruc-
tion result. The resulted BFW-SAV out-performs the original SAV in the binary
signal reconstruction.
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• BRSN outperforms l1, SAV, SN in binary signal and bitonal image reconstruction.

• In the case that the to-be-recovered-signal is sparse, BRSN has the same recon-
struction performance as Boxed BP; on the other hand, in the case that the
to-be-recovered signal is dense, BRSN has the more accurate and stable recon-
struction performance.
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Chapter 5

Conclusion and Open questions

In this thesis, we study the Discrete CS in two perspectives: first, we develop the
unique reconstruction guarantee of discrete signals from random matrices; second, we
provide a survey of convex optimization methods for discrete signals, and particularly
we propose the BFW-SAV(Binary Fixed Weights Sum of Absolute Values) and BRSN
for binary signal reconstruction.

Note that, however, there are various of limitations of our approaches in both per-
spectives:

• Although the Discrete NSP is weaker than the General NSP, the gap between
Discrete NSP and General NSP is in too thin to yield any useful property. One
might notice that in the experiments, we did not use the Discrete NSP to guar-
antee the unique reconstruction. In fact, Gaussian random matrices satisfy the
General NSP, and therefore automatically satisfy Discrete NSP. Discrete NSP
does not give us more choices for random matrices.

Dr. Dae Gwan Lee and coworkers developed the “Weak Null Space Property,”
which is weaker than the Discrete Null Space property. We will not include the
Weak Null Space Property in this thesis since the work is not yet released.

• From our experiment, our proposed BRSN has the same reconstruction perfor-
mance as boxed l1 in the case of p close to 1, i.e., when the signal is sparse
enough. Although it is true that BRSN has the better performance in other
cases, it somehow deviate from our original interests in the K-sparse model,
where K � N .

• The proposed BFW-SAV and BRSN together with SAV, SN, l1, boxed l1, have
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the drawbacks of high computational complexity. We perform these optimization
methods by using the CVX toolbox, which relies on the interior point method
of linear programming.

In below we list some topics are still open for discussion and should be investigated
in the future. Particularly, we classify them into three categories.

• Category I: in this category, we list those questions we observe in the experi-
ments but fail to explain in the theoretical level.

– The non-symmetric, bimodal, zigzagging behaviour of SAV described in the
end of section 4.2.2.

– The unstable behaviour of Boxed-BP in the range p < 0.5 described in the
end of section 4.3.2.

– The inferior reconstruction performance of Boxed-BP on bitonal image,
given its superior reconstruction performance on binary signal reconstruc-
tion. It was mentioned in the end of section 4.3.3.

• Category II: In this category, we present two concrete future research orien-
tations. The difference between Category II and I is that, for the questions in
Category II, we do not have evidence from the experiments.

– Study the following optimization method under the Binary CS scheme:

minimize (1− p)|| z ||1 + p|| z−1T
N ||1 + λ

∑
i<j

max {|xi −
1
2 |, |xj −

1
2 |}

subject to Φ z = y, where p = P(zj = 0), ∀j ∈ [N ]

In the above minimization, we replace the uniform infinity norm in BRSN
by the pairwise infinity norms. This replacement aims to punish the entries
that have distinct magnitude harder. However, this optimization, though
convex, can not be realized inCVX toolbox due to its combinatorial nature.
But we believe that it could be solved by using the “proximal splitting
algorithms” proposed in [28].

– Follow the same routine as in section 4.2.1 to check that if we can select
better weights for BRSN. That is to say, we study the following optimiza-
tion,

minimize (1− t

N
)|| z ||1 + t

N
|| z−1N ||1 + λ || z−1

2 1N ||∞
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subject to Φ z = y, N = dim(z).

where t is just some number that is no longer related to the sparsity. Par-
ticularly, it is important to understand the tangent cone associated with
the BRSN problem.

• Category III: In this category, we present some open questions in the general
sense. The difference between Category III and II is that, for the open questions
in Category III, we do not have a concrete approach.

– Develop the Discrete Restricted Isometry Property, which should be strong
enough to imply Discrete Null Space Property, but still weak enough to
relax the condition of General Restricted Isometry Property.

– Study the Phase Transition Diagram [11] of SAV, BP, boxed-BP, SN, BFW-
SAV, and BRSN.

– Study the reconstruction performance of SAV, BP, boxed-BP, SN, BFW-
SAV, and BRSN under noise.

– Develop methods that systematically tunes the λ scaling scalar in SN and
BRSN.

– Consider the Discrete CS problem in the non-convex-optimization scenario.

– Develop greedy methods tailored for discrete signal reconstruction which
have low computational complexity.
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Appendix

Acronyms
BP . . . . . . . . . . . . . . . . . Basis Pursuit
BRSN . . . . . . . . . . . . . . Binary Reweighted Sum of Norm
CS . . . . . . . . . . . . . . . . . Compressive Sensing
CVX . . . . . . . . . . . . . . . Matlab Software for Disciplined Convex Programming
DFT . . . . . . . . . . . . . . . Disecrete Fourier Transformation
IT . . . . . . . . . . . . . . . . . . Iterative Threshold
MATLAB . . . . . . . . . . MATrix LABoratory, Numeric Programming Software
NSP . . . . . . . . . . . . . . . Null Space Property
MP . . . . . . . . . . . . . . . . Matching Pursuit
NSP . . . . . . . . . . . . . . . Null Space Property
OMP . . . . . . . . . . . . . . . Orthogonal Matching Pursuit
RF . . . . . . . . . . . . . . . . . Reconstruction Failure Probability
SAV . . . . . . . . . . . . . . . . Sum of Absolute Value minimization
SN . . . . . . . . . . . . . . . . . Sum of Norm minimization
SNR . . . . . . . . . . . . . . . Signal to Noise Ratio

Symbols
C . . . . . . . . . . . . . . . . . . Field of Complex Numbers
Card . . . . . . . . . . . . . . . Cardinality of a set
K . . . . . . . . . . . . . . . . . . Set that contains locations of non-zero entries of a vector.
K . . . . . . . . . . . . . . . . . . Complement of the set K.
ker . . . . . . . . . . . . . . . . Kernel of a matrix
[N ] . . . . . . . . . . . . . . . . . {1, 2, . . . , N}
Φ . . . . . . . . . . . . . . . . . . Sensing Matrix
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R . . . . . . . . . . . . . . . . . . Field of Real Numbers
sgn . . . . . . . . . . . . . . . . . the signum function that extracts the sign of a real number or

vector
supp . . . . . . . . . . . . . . . Support of a vector
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